Xenia Polunin

One of Douglas’ Many Interests

Enhanced Oil-recovery and Its Environmental and Economic Implications in the United States

Douglas Argyle Campbella1

a1 President, D.A. Campbell Company Inc., 1150 Brooklawn Drive, Los Angeles, California 90024, U.S.A.

This survey has described the foreseeable environmental and economic impacts of enhanced oil-recovery (EOR) on U.S. oil production between 1980 and 2000. It has indicated that EOR production may be expected to rise from the approximately 4% of total U.S. oil production in 1980, to the projected approximations of 10.5% in 1985, 18.5% in 1990, 23% in 1995, and perhaps 30% in 2000. These percentages are substantial, particularly as this form of oil production has been, up until recently, quite limited. Many of the processes are still in the laboratory stage of development—particularly chemical and microbiological processes. With continued laboratory experimentation and field research, it is possible that the percentages could be even greater than the above suggestions as we reach into the 21st Century.

The potential for EOR is very considerable and probably great, as it could involve some two-thirds of all the oil already identified in the United States and assumed to be unrecoverable by primary or secondary means. The U.S. Department of Energy (DOE) has given important incentives to the EOR industry to make such increased production worth while through raising prices to compensate for the cost of equipment, and deducting expenditure on such equipment from a new ‘Windfall Profit Tax’.

Along with EOR's economic potential, there are two major ecological dangers: air pollution through thermal processes, and ground-water pollution through chemical processes. It is essential to the well-being of the United States that clean air standards be adhered to, and that the equipment necessary to purify the air (particularly in California) be available and operate to reduce emissions.

A great deal more research needs to be undertaken towards developing safeguards to ensure that drinkingwater is not contaminated by dangerous chemicals which may be used in ‘chemical flooding’ of depleted oil-wells. Many of these chemicals have merely ‘come out of the laboratory’ and are sold by chemical companies without sufficient field-testing. How far these chemicals could travel underground must still be determined. It is also important to ensure that carbon dioxide, fed into a geological formation, can be recaptured and re-injected without escaping into the atmosphere, where there is the potential danger of a global ‘greenhouse effect’ upon the world's temperature. Finally, it is important to safeguard the Earth against microbes which could be injected into its geological strata without sufficient knowledge of their impact on the ecology of the Earth. Thus, much environmental research will be called for with these new methods of producing oil for Man's use.

This study has reviewed the four major methods of EOR that are currently being utilized or proposed— thermal processes, miscible and semi-miscible processes, chemical processes, and microbiological processes, and found that they could all have ongoing possibilities.

Given appropriate environmental safeguards, EOR should become a major force in the production of energy for the United States over the next 20 years, and it seems reasonable to expect that much the same could apply to other parts of the world. However, it is important that safeguarding the environment should guide the DOE in terms of its incentive programmes for specific processes.